綁定帳號登入

Android 台灣中文網

tag 標籤: 二進制

相關帖子

版塊 作者 回覆/查看 最後發表
In810更新為15WW_5_16B後 , SuperSU會出現二進制更新失敗 attach_img Android 綜合刷機 Sandersod 2014-7-18 4 2049 soon5182 2014-8-24 16:39
su二進制文件已過時 attach_img Android 綜合刷機 s10410727 2011-10-6 48 22219 s02864 2015-11-4 19:16
二進制文件無法更新!! attach_img G8 HTC Wildfire babyfatorz 2012-2-4 4 1480 babyfatorz 2012-3-8 21:45
ROOT 二進制檔案更新 - [!reward_solved!] attach_img 已解決或取消懸賞 k781123 2013-9-11 4 5052 k781123 2011-9-15 16:20
ROOT 二進制檔案更新 New HTC One yen88822 2014-2-5 6 1377 nsx720321 2014-2-11 11:35
HTC NEW ONE SUPERSU二進制更新問題 attach_img New HTC One 傅宇豪 2014-2-20 3 1601 manboyhot 2014-2-20 23:35
一直出現二進制需要更新 attach_img HTC One M8 loveim 2016-7-22 3 1017 agu828 2016-8-8 01:18
HTC Butterfly 超級權限二進制如何更新問題 attach_img HTC Butterfly zz0972797027 2016-11-26 3 1279 su378x87 2017-9-29 01:26
TWRP卡刷SUPERSU二進制檔無效 Galaxy S7/S7 Edge chengddjack 2016-12-11 1 1053 chengddjack 2016-12-11 21:07
凌航Neo Forza DDR5-5600 24GB記憶體-非二進制容量入門新選擇,同樣給你強悍的超頻表現 電腦硬體週邊 johnuahuang 2023-7-10 0 2828 johnuahuang 2023-7-10 08:22
美光Crucial DDR5 Pro 6000 48GB kit記憶體-非二進制入門新選擇,超頻表現也大幅度提升 電腦硬體週邊 johnuahuang 2023-12-11 1 6779 balala 2024-3-17 16:19
威剛XPG LANCER BLADE RGB DDR5-6000 48GB kit記憶體-非二進制大容量,有RGB燈效加持,還有優質超頻表現! 電腦硬體週邊 johnuahuang 2024-1-26 0 3131 johnuahuang 2024-1-26 08:54

相關日誌

分享 rnn 八位元二進制加法
嵐風 2021-7-9 11:55
import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def sigmoid(x): output = 1/(1+np.exp(-x)) return output # convert output of sigmoid function to its derivative def sigmoid_output_to_derivative(output): return output*(1-output) # training dataset generation int2binary = {} binary_dim = 8 largest_number = pow(2,binary_dim) binary = np.unpackbits(np.array( ,dtype=np.uint8).T,axis=1) for i in range(largest_number): int2binary = binary # input variables alpha = 0.3 input_dim = 2 hidden_dim = 16 output_dim = 1 # initialize neural network weights synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1 synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1 synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1 synapse_0_update = np.zeros_like(synapse_0) synapse_1_update = np.zeros_like(synapse_1) synapse_h_update = np.zeros_like(synapse_h) # training logic for j in range(10000): # generate a simple addition problem (a + b = c) a_int = np.random.randint(largest_number/2) # int version a = int2binary # binary encoding b_int = np.random.randint(largest_number/2) # int version b = int2binary # binary encoding # true answer c_int = a_int + b_int c = int2binary # where we"ll store our best guess (binary encoded) d = np.zeros_like(c) overallError = 0 layer_2_deltas = list() layer_1_values = list() layer_1_values.append(np.zeros(hidden_dim)) # moving along the positions in the binary encoding for position in range(binary_dim): # generate input and output X = np.array( ,b ]]) y = np.array( ]]).T # hidden layer (input ~+ prev_hidden) layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values ,synapse_h)) # output layer (new binary representation) layer_2 = sigmoid(np.dot(layer_1,synapse_1)) # did we miss?... if so by how much? layer_2_error = y - layer_2 layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2)) overallError += np.abs(layer_2_error ) # decode estimate so we can print it out d = np.round(layer_2 ) # store hidden layer so we can use it in the next timestep layer_1_values.append(copy.deepcopy(layer_1)) future_layer_1_delta = np.zeros(hidden_dim) for position in range(binary_dim): X = np.array( ,b ]]) layer_1 = layer_1_values prev_layer_1 = layer_1_values # error at output layer layer_2_delta = layer_2_deltas # error at hidden layer layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1) # let"s update all our weights so we can try again synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta) synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta) synapse_0_update += X.T.dot(layer_1_delta) future_layer_1_delta = layer_1_delta synapse_0 += synapse_0_update * alpha synapse_1 += synapse_1_update * alpha synapse_h += synapse_h_update * alpha synapse_0_update *= 0 synapse_1_update *= 0 synapse_h_update *= 0 # print out progress if(j % 1000 == 0): print("誤差: "+str(overallError)) print("預測: "+str(d)) print("實際: "+str(c)) out = 0 for index,x in enumerate(reversed(d)): out += x*pow(2,index) print(str(a_int) + " + " + str(b_int) + " = " + str(out)) print("------------")
116 次閱讀|0 個評論